1. An electric current of 1.00 ampere is passed through an aqueous solution of Ni(NO₃)₂. How long will it take to plate out exactly 1.00 mol of nickel metal, assuming 100 percent current efficiency?

 $(1 \text{ faraday} = 96,500 \text{ coulombs} = 6.02 \text{ X } 10^{23} \text{ electrons})$

- (A) 386,000 sec
- (B) 193,000 sec
- (C) 96,500 sec
- (D) 48,200 sec
- (E) 24,100 sec

2.

The spontaneous reaction that occurs when the cell above operates is $2 \text{ Ag}^+ + \text{Cd}(s) \rightarrow 2 \text{ Ag}(s) + \text{Cd}^{2+}$

Which of the above occurs for the following circumstance?

A 50-milliliter sample of a 2-molar Cd(NO₃)₂ solution is added to the left beaker.

- (A) Voltage increases.
- (B) Voltage decreases but remains above zero
- (C) Voltage becomes zero and remains at zero
- (D) No change in voltage occurs
- (E) Direction of voltage change cannot be predicted without additional information

The spontaneous reaction that occurs when the cell above operates is $2 \operatorname{Ag}^+ + \operatorname{Cd}(s) \rightarrow 2 \operatorname{Ag}(s) + \operatorname{Cd}^{2+}$

Which of the above occurs for the following circumstance?

The silver electrode is made larger.

(A) Voltage increases.

4.

- (B) Voltage decreases but remains above zero
- (C) Voltage becomes zero and remains at zero
- (D) No change in voltage occurs
- (E) Direction of voltage change cannot be predicted without additional information

The spontaneous reaction that occurs when the cell above operates is $2 \operatorname{Ag}^+ + \operatorname{Cd}(s) \rightarrow 2 \operatorname{Ag}(s) + \operatorname{Cd}^{2+}$

Which of the above occurs for the following circumstance?

The salt bridge is replaced by a platinum wire.

- (A) Voltage increases.
- (B) Voltage decreases but remains above zero
- (C) Voltage becomes zero and remains at zero
- (D) No change in voltage occurs
- (E) Direction of voltage change cannot be predicted without additional information

The spontaneous reaction that occurs when the cell above operates is $2 \text{ Ag}^+ + \text{Cd}(s) \rightarrow 2 \text{ Ag}(s) + \text{Cd}^{2+}$

Which of the above occurs for the following circumstance?

Current is allowed to flow for 5 minutes

- (A) Voltage increases.
- (B) Voltage decreases but remains above zero
- (C) Voltage becomes zero and remains at zero
- (D) No change in voltage occurs
- (E) Direction of voltage change cannot be predicted without additional information

6. $Cu(s) + 2 Ag^+ \rightarrow Cu^{2+} + 2 Ag(s)$

If the equilibrium constant for the reaction above is 3.7 x 10^{15} , which of the following correctly describes the standard voltage, E° , and the standard free energy change, ΔG° , for this reaction?

- (A) E° is positive and ΔG° is negative.
- (B) E° is negative and ΔG° is positive.
- (C) E° and ΔG° are both positive.
- (D) E° and ΔG° are both negative.
- (E) E° and ΔG° are both zero.

7. $\operatorname{Zn}(s) + \operatorname{Cu}^{2+} \rightleftharpoons \operatorname{Zn}^{2+} + \operatorname{Cu}(s)$

An electrolytic cell based on the reaction represented above was constructed from zinc and copper half-cells. The observed voltage was found to be 1.00 volt instead of the standard cell potential, E^0 , of 1.10 volts. Which of the following could correctly account for this observation?

- (A) The copper electrode was larger than the zinc electrode.
- (B) The Zn^{2+} electrolyte was $Zn(NO_3)_{2,}$ while the Cu^{2+} electrolyte was $CuSO_4$.
- (C) The Zn^{2+} solution was more concentrated than the Cu^{2+} solution.
- (D) The solutions in the half-cells had different volumes.
- (E) The salt bridge contained KCl as the electrolyte.
- **8.** In the electroplating of nickel, 0.200 faraday of electrical charge is passed through a solution of NiSO₄. What mass of nickel is deposited?
 - (A) 2.94 g
 - (B) 5.87 g
 - (C) 11.7 g
 - (D) 58.7 g
 - (E) 294 g
- 9.

$$M(s) + 3 \text{ Ag}^+(aq) \rightarrow 3 \text{ Ag}(s) + M^{3+}(aq) \qquad E^\circ = +2.46 \text{ V}$$

$$\operatorname{Ag}^+(aq) + e^- \to \operatorname{Ag}(s)$$
 $E^\circ = + 0.80 \text{ V}$

According to the information above, what is the standard reduction potential for the half-reaction $M^{3+}(aq) + 3e^- \rightarrow M(s)$?

- (A) -1.66 V
- (B) -0.06 V
- (C) 0.06 V
- (D) 1.66 V
- (E) 3.26 V

10.

Half-Reaction	$E^{\circ}\left(\mathrm{V} ight)$
$\mathrm{Ag}^+ig(aqig) + e^- o \mathrm{Ag}ig(sig)$	0.80
${ m Cr}^{3+}ig(aqig)+3~e^- o { m Cr}ig(sig)$	-0.41

Based on the standard reduction potentials in the table above, what is the value of E° for a standard galvanic cell made with Ag/Ag⁺ and Cr/Cr³⁺ half-cells?

AP CollegeBoard

Redox Review

- (A) 0.39 V
- (B) 1.21 V
- (C) 1.99 V
- (D) $2.81 \ V$