DO NOT DETACH FROM BOOK.

		به	0		ده	18	200	<u></u>	35		<u>.</u>	30		ده	29	, _	u	5			
	2	He	4.00	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	98	Rn	(222)			
				6	<u> </u>	19.00	17	\Box	35.45	35	Br	79.90	53	Ι	126.91	85	At	(210)			
				8	0	16.00	16	S	32.06	34	Se	78.96	52	Te	127.60	84	P_0	(209)			
7.4	0			7	Z	14.01	15	Ь	30.97	33	$\mathbf{A}\mathbf{s}$	74.92	51	Sb	121.75	83	Bi	208.98			
				9	၁	12.01	14	Si	28.09	32	Ge	72.59	50	Sn	118.71	82	Pb	207.2			
				5	B	10.81	13	Al	26.98	31	Ga	69.72	49	In	114.82	81	Ι	204.38			
										30	Zn	65.39	48	Cd	112.41	80	Hg	200.59			
										29	Cu	63.55	47	Ag	107.87	62	Au	196.97	111	Rg	(272)
	OF									28	Z	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	(271)
	JUE									27	Co	58.93	45	Rh	102.91	77	Ir	192.2	109	Mt	(268)
	IAD									26	Fe	55.85	44	Ru	101.1	92	Os	190.2	108	Hs	(277)
										25	Mn	54.94	43	Tc	(86)	75	Re	186.21	107	Bh	(264)
										24	Cr	52.00	42	Mo	95.94	74	×	183.85	106	Sa	(366)
	7									23	>	50.94	41	NP	92.91	73	Ta	180.95	105	Db	(262)
										22	Τ̈́	47.90	40	\mathbf{Zr}	91.22	72	Hlf	178.49	104	Rf	(261)
										21	Sc	44.96	39	Y	88.91	57	*La	138.91	68	†Ac	227.03
				4	Be	9.01	12	Mg	24.30	20	Ca	40.08	38	\mathbf{Sr}	87.62	99	Ba	137.33	88	Ra	226.02
		Н	1.008	3	Li	6.94	11	Na	22.99	19	X	39.10	37	Rb	85.47	55	Cs	132.91	87	Fr	(223)

	b Lu			0 Γ r	9) (262)
70	,		10	No	(259)
69	Tm		101	Md	(258)
89			100	Fm	(257)
29	H_0	164.93	66	Es	(252)
99	Dy	162.50	86	Cf	(251)
65	Tb	158.93	26	Bk	(247)
64	P.S	157.25	96	Cm	(247)
63	Eu	151.97	95	Am	(243)
62	Sm	150.4	94	Pu	(244)
61	Pm	(145)	93	N_{p}	(237)
09	Nd	144.24	92	Ω	238.03
59	Pr	140.91	91	Pa	231.04
58	Ce	140.12	06	Th	232.04
	*Lanthanide Series			†Actinide Series	

AP® CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

L, mL = liter(s), milliliter(s)

= gram(s)

= nanometer(s) nm = atmosphere(s)

millimeters of mercury mm Hg =J, kJ joule(s), kilojoule(s)

volt(s) mole(s) mol

ATOMIC STRUCTURE

$$E = h \nu$$

 $c = \lambda v$

E = energy

 ν = frequency

 λ = wavelength

Planck's constant, $h = 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$

Speed of light, $c = 2.998 \times 10^{8} \,\text{m s}^{-1}$

Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$

Electron charge, $e = -1.602 \times 10^{-19}$ coulomb

EQUILIBRIUM

 $K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$, where $a A + b B \rightleftharpoons c C + d D$

 $K_p = \frac{(P_{\rm C})^c (P_{\rm D})^d}{(P_{\rm A})^a (P_{\rm B})^b}$

 $K_a = \frac{[\mathrm{H}^+][\mathrm{A}^-]}{[\mathrm{HA}]}$

 $K_b = \frac{[OH^-][HB^+]}{[B]}$

 $K_w = [H^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$ $= K_a \times K_b$

 $pH = -log[H^+], pOH = -log[OH^-]$

14 = pH + pOH

 $pH = pK_a + \log \frac{[A^-]}{[HA]}$

 $pK_a = -\log K_a$, $pK_b = -\log K_b$

Equilibrium Constants

 K_c (molar concentrations)

 K_p (gas pressures)

 K_a (weak acid)

 K_b (weak base)

 K_w (water)

KINETICS

 $\ln[A]_t - \ln[A]_0 = -kt$

 $\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$

 $t_{1/2} = \frac{0.693}{k}$

k = rate constant

t = time

 $t_{1/2}$ = half-life

GASES, LIQUIDS, AND SOLUTIONS

$$PV = nRT$$

$$P_A = P_{\text{total}} \times X_A$$
, where $X_A = \frac{\text{moles A}}{\text{total moles}}$

$$P_{total} = P_{\rm A} + P_{\rm B} + P_{\rm C} + \dots$$

$$n = \frac{m}{M}$$

$$K = {}^{\circ}C + 273$$

$$D = \frac{m}{V}$$

$$KE$$
 per molecule = $\frac{1}{2} mv^2$

Molarity, M =moles of solute per liter of solution

$$A = abc$$

P = pressure

V = volume

T = temperature

n = number of moles

m = mass

M = molar mass

D = density

KE = kinetic energy

v = velocity

A = absorbance

a = molar absorptivity

b = path length

c = concentration

Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{K}^{-1}$

 $= 0.08206 L atm mol^{-1} K^{-1}$

 $= 62.36 L torr mol^{-1} K^{-1}$

1 atm = 760 mm Hg = 760 torr

STP = 273.15 K and 1.0 atm

THERMODYNAMICS/ELECTROCHEMISTRY

$$q = mc\Delta T$$

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products} - \sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_f^{\circ} \text{ products} - \sum \Delta H_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_f^{\circ} \text{ products} - \sum \Delta G_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$= -RT \ln K$$

$$= -nFE^{\circ}$$

$$I = \frac{q}{t}$$

q = heat

m = mass

c =specific heat capacity

T =temperature

 S° = standard entropy

 H° = standard enthalpy

 G° = standard Gibbs free energy

n =number of moles

 E° = standard reduction potential

I = current (amperes)

q = charge (coulombs)

t = time (seconds)

Faraday's constant, F = 96,485 coulombs per mole of electrons

$$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$$